
© 2014 Carnegie Mellon University

Software Model Checking for

Verifying Distributed

Algorithms

Sagar Chaki, James Edmondson
October 28, 2014

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
28 OCT 2014

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Software Model Checking for Verifying Distributed Algorithms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Chaki /Sagar

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under

Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM

PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted

below.

This material may be reproduced in its entirety, without modification, and freely distributed in written

or electronic form without requesting formal permission. Permission is required for any other use.

Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

DM-0001784

3

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Motivation

Distributed algorithms have always been important

• File Systems, Resource Allocation, Internet, …

Increasingly becoming safety-critical

• Robotic, transportation, energy, medical

Prove correctness of distributed algorithm
implementations

• Pseudo-code is verified manually (semantic gap)

• Implementations are heavily tested (low coverage)

Model-Driven Verifying Compilation of Synchronous Distributed Applications,

Sagar Chaki, James Edmondson, Proc. of MODELS 2014, to appear

4

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Approach : Verification + Code Generation

Distributed

Application

Safety

Specification

Program in Domain Specific Language

Verification

Code

Generation

Binary

Debug Application,

Refine Specification
Success

Failure

Run on Physical

Device

Run within

simulator

The Verifying Compiler:

A Grand Challenge for

computing research

Tony Hoare

5

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Verification

Distributed

Application

Safety

Specification

Sequentialization (assuming

synchronous communication)

Single-Threaded C Program

Software Model Checking

(CBMC, BLAST etc.)

Failure Success

Program in Domain Specific Language

Automatic verification technique for finite
state concurrent systems.

• Developed independently by Clarke and
Emerson and by Queille and Sifakis in
early 1980’s.

• ACM Turing Award 2007

Specifications are written in propositional
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear
Temporal Logic (LTL), …

Verification procedure is an intelligent
exhaustive search of the state space of
the design

Model Checking

6

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Code Generation

Distributed

Application

Safety

Specification

Add synchronizer protocol

C++/MADARA Program

Compile

(g++,clang,MSVC, etc.)

Program in Domain Specific Language
A database of facts: 𝐷𝐵 = 𝑉𝑎𝑟 ↦
𝑉𝑎𝑙𝑢𝑒

Node 𝑖 has a local copy: 𝐷𝐵𝑖

• update 𝐷𝐵𝑖 arbitrarily

• publish new variable mappings

• Immediate or delayed

• Multiple variable mappings

transmitted atomically

Implicit “receive” thread on each node

• Receives and processes variable

updates from other nodes

• Updates ordered via Lamport

clocks

Portable to different OSes (Windows,

Linux, Android etc.) and networking

technology (TCP/IP, UDP, DDS etc.)
Binary

MADARA Middleware

© 2014 Carnegie Mellon University

Case Study: Synchronous

Collision Avoidance

8

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Example: Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Reserve Reserve Reserve

X

Y

9

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Example: Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Reserve

Reserve

Reserve

X

Y

10

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Example: Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Potential

Collision

Reservation

Contention

Resolved based

on Node ID. No

collision

possible if no

over-booking.

X

Y

11

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Collision Avoidance Protocol

NEXT

REQUEST
If time to move to

next coordinate

WAITING

If no other node is

locking the next

coordinate

MOVE

If no other node

“with higher id” is

trying to lock the

next coordinate

Reached the next

coordinate

Moving to the

next coordinate

12

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Synchronous Collision Avoidance Code

MOC_SYNC;

CONST X = 4; CONST Y = 4;

CONST NEXT = 0;

CONST REQUEST = 1;

CONST WAITING = 2;

CONST MOVE = 3;

EXTERN int

MOVE_TO (unsigned char x,

 unsigned char y);

NODE uav (id) { … }

void INIT () { … }

void SAFETY { … }

NODE uav (id)

{

 GLOBAL bool lock [X][Y][#N];

 LOCAL int state,x,y,xp,yp,xf,yf;

 void NEXT_XY () { … }

 void ROUND () {

 if(state == NEXT) { …

 state = REQUEST;

 } else if(state == REQUEST) { …

 state = WAITING;

 } else if(state == WAITING) { …

 state = MOVE;

 } else if(state == MOVE) { …

 state = NEXT;

 } } }

INIT

{

 FORALL_NODE(id)

 state.id = NEXT;

 //assign x.id and y.id non-deterministically

 //assume they are within the correct range

 //assign lock[x.id][y.id][id] appropriately

 //nodes don’t collide initially

 FORALL_DISTINCT_NODE_PAIR (id1,id2)

 ASSUME(x.id1 != x.id2 || y.id1 != y.id2);

}

SAFETY {

 FORALL_DISTINCT_NODE_PAIR (id1,id2)

 ASSERT(x.id1 != x.id2 || y.id1 != y.id2);

}

13

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Synchronous Collision Avoidance Code

 if(state == NEXT) {

 //compute next point on route

 if(x == xf && y == yf) return;

 NEXT_XY();

 state = REQUEST;

 } else if(state == REQUEST) {

 //request the lock but only if it is free

 if(EXISTS_OTHER(idp,lock[xp][yp][idp] != 0)) return;

 lock[xp][yp][id] = 1;

 state = WAITING;

 } else if(state == WAITING) {

 //grab the lock if we are the highest

 //id node to request or hold the lock

 if(EXISTS_HIGHER(idp, lock[xp][yp][idp] != 0)) return;

 state = MOVE;

 }

 else if(state == MOVE) {

 //now we have the lock on (xp,yp)

 if(MOVE_TO()) return;

 lock[x][y][id] = 0;

 x = xp; y = yp;

 state = NEXT;

 }

14

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Tool Usage

Project webpage (http://mcda.googlecode.com)

• Tutorial (https://code.google.com/p/mcda/wiki/Tutorial)

Verification

• daslc --nodes 3 --seq --rounds 3 --seq-dbl --out tutorial-02.c tutorial-
02.dasl

• cbmc tutorial-02.c (takes about 10s to verify)

Code generation & simulation

• daslc --nodes 3 --madara --vrep --out tutorial-02.cpp tutorial-02.dasl

• g++ …

• mcda-vrep.sh 3 outdir ./tutorial-02 …

© 2014 Carnegie Mellon University

Demonstration: Synchronous

Collision Avoidance

16

Verifying Synchronous Distributed App

Sagar Chaki, June 11, 2014

© 2014 Carnegie Mellon University

Contact Information Slide Format

Sagar Chaki

Principal Researcher

SSD/CSC

Telephone: +1 412-268-1436

Email: chaki@sei.cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

